

## WALIKOTA AMBON PROVINSI MALUKU

## PERATURAN WALIKOTA AMBON NOMOR 17 TAHUN 2022

#### **TENTANG**

## PERSYARATAN TEKNIS DAN TATA CARA PEMASANGAN SISTEM PIPA TEGAK DAN SLANG KEBAKARAN SERTA HIDRAN HALAMAN

## DENGAN RAHMAT TUHAN YANG MAHA ESA

#### WALIKOTA AMBON,

#### Menimbang

: bahwa untuk melaksanakan ketentuan Pasal 19 ayat (6) Peraturan Daerah Kota Ambon Nomor 3 Tahun 2018 tentang Pencegahan dan Penanggulangan Bahaya Kebakaran dan Penyelamatan, perlu menetapkan Peraturan Walikota tentang Persyaratan Teknis Dan Tata Cara Pemasangan Sistem Pipa Tegak Dan Slang Kebakaran Serta Hidran Halaman;

#### Mengingat

- 1. Undang-Undang Nomor 60 Tahun 1958 Tentang Penetapan Undang-Undang Darurat Nomor 23 Tahun 1957 Tentang Pembentukan Daerah-Daerah Swatantra Tingkat II Dalam Daerah Swatantra Tingkat I Maluku (Lembaran Negara Republik Indonesia Tahun 1957 Nomor 80), sebagai Undang-Undang (Lembaran Negara Lembaran Negara Republik Indonesia Tahun 1958 Nomor 111; Tambahan Lembaran Negara Republik Indonesia (Nomor 1645);
  - Undang-Undang Nomor 28 Tahun 2002 tentang Bangunan gedung (Lembaran Negara Republik Indonesia Tahun 2002 Nomor 134, Tambahan Lembaran Negara Republik Indonesia Nomor 4247);
  - 3. Undang-Undang Nomor 23 Tahun 2014 tentang Pemerintahan Daerah (Lembaran Negara Republik Indonesia Tahun 2014 Nomor 244, Tambahan Lembaran Negara Republik Indonesia Nomor 5597), sebagaimana telah diubah beberapa kali terakhir dengan Undang-Undang Nomor 9 Tahun 2015 tentang Perubahan Kedua Atas Undang-Undang Nomor 23 Tahun 2014 tentang Pemerintahan Daerah (Lembaran Negara Republik Indonesia Tahun 2015 Nomor 58, Tambahan Lembaran Negara Republik Indonesia Nomor 5679);

- 4. Peraturan Pemerintah Nomor 13 Tahun 1979 tentang Perubahan Batas Wilayah Kotamadya Daerah Tingkat II Ambon (Lembaran Negara Republik Indonesia Tahun 1979 Nomor 20, Tambahan Lembaran Negara Republik Indonesia Nomor 3137);
- 5. Peraturan Menteri Pekerjaan Umum Nomor 25/Prt/M/2008 tentang Pedoman Teknis Penyusunan Rencana Induk Sistem Proteksi kebakaran;
- Peraturan Menteri Pekerjaan Umum Nomor 20/Prt/M/2009 tentang Pedoman Teknis Manajemen Proteksi kebakaran di Perkotaan;
- 7. Peraturan Daerah Kota Ambon Nomor 4 Tahun 2016 tentang Pembentukan dan Susunan Perangkat Daerah (Lembaran Daerah Kota Ambon Tahun 2016 Nomor 4, Tambahan Lembaran Daerah Kota Ambon Nomor 321);
- 8. Peraturan Daerah Nomor 3 Tahun 2018 tentang Pencegahan, Penanggulangan Bahaya Kebakaran dan Penyelamatan(Lembaran Daerah Kota Ambon Tahun 2018 Nomor 3, Tambahan Lembaran Daerah Kota Ambon Nomor 350);

#### **MEMUTUSKAN:**

Menetapkan

PERATURAN WALIKOTA TENTANG PERSYARATAN TEKNIS DAN TATA CARA PEMASANGAN SISTEM PIPA TEGAK DAN SLANG KEBAKARAN SERTA HIDRAN HALAMAN

## BAB I KETENTUAN UMUM

#### Pasal 1

Dalam Peraturan Walikota ini yang dimaksud dengan:

- 1. Daerah adalah Kota Ambon.
- Pemerintah Daerah adalah Walikota sebagai unsur penyelenggara Pemerintahan Daerah yang memimpin pelaksanaan urusan Pemerintahan yang menjadi kewenangan daerah otonom.
- 3. Walikota adalah Walikota Ambon.
- 4. Dinas adalah Dinas Pemadam kebakaran dan Penyelamatan Kota Ambon.

- 5. Kepala Dinas adalah Kepala Dinas Pemadam kebakaran dan Penyelamatan Kota Ambon.
- 6. Sistem Pipa Tegak adalah suatu susunan perpipaan, katup, sambungan slang dan peralatan terkait yang diperlukan dipasang dalam satu gedung, dengan sambungan slang ditempatkan sesuai standar sehingga air dapat dikeluarkan melalui slang dan nosel dalam pola pancaran (stream) atau pola sebaran (spray), semata-mata dengan maksud memadamkan kebakaran dan dengan demikian melindungi gedung atau struktur dan isinya, selain penghuni gedung.
- 7. Slang Kebakaran adalah slang gulung yang dilengkapi dengan mulut pemancar (nosel) untuk mengalirkan air yang bertekanan.
- 8. Hidran Halaman adalah suatu fasilitas diluar gedung yang dilengkapi katup yang dilengkapi katup untuk menyambungkan slang ke suatu system penyediaan air.
- 9. Sistem kombinasi adalah suatu sistem Pipa Tegak yang menyediakan air sekaligus untuk menyambungkan slang dan sprinkler otomatik dari 1 (satu) pompa dengan masing-masing pipa tegak (*riser*).
- 10. Standar adalah Standara Nasional Indonesia yang terkait dengan ketentuan teknis Sistem Pipa Tegak dan Slang Kebakaran serta Hidran Halaman yang masih berlaku.
- 11. Pipa Tegak (Riser) adalah bagian dari Sistem Pipa Tegak yang mengalirkan air untuk sambungan slang, dan sprinkler pada Sistem Kombinasi, yang dalam posisi tegak (Vertikal) dari satu lantai berikutnya. Istilah "Pipa Tegak" dapat pula dimaksudkan untuk bagian mendatar (horizontal) dari sistem pipa yang mengalirkan air kepada dua atau lebih sambungan slang dan sprinkler pada Sistem Kombinasi, pada suatu ketinggian yang sama.
- 12. Sambungan Slang (Landing Valve) adalah suatu kombinasi peralatan yang disediakan untuk menyambungkan sebuah slang ke sebuah Sistem Pipa tegak yang meliputi katup untuk slang dan keluaran dengan jenis dan ukuran yang sama dengan yang digunakan dengan Dinas.
- 13. Sistem Pipa Tegak Basah adalah Sistem Pipa Tegak Basah Otomatik yang disambungkan kepenyediaan yang mampu memasukkan seluruh kebutuhan air sistem tersebut setiap saat dan yang tidak membutuhkan tindakan apapun selain membuka sebuah katub slang untuk menyediakan air pada sebuah sambungan slang.

- 14. Sistem Pipa Tegak Kering adalah Sistem Pipa Tegak Kering Non Otomatik (Manual) yang dalam keadaan biasa tidak berisi air dan hanya akan berisi air bertekanan cukup yang disediakan oleh mobil pompa pemadam kebakaran pada saat yang diperlukan.
- 15. Bangunan Gedung Bertingkat Rendah adalah bangunan yang mempunyai ketinggian dari permukaan/level akses kendaraan pemadam sampai dengan ketinggian paling tinggi 12M (dua belas meter)atau paling tinggi 4 (empat) lantai.
- 16. Bangunan Gedung Bertingkat Sedang adalah bangunan yang mempunyai ketinggian lebih dari 12 M (dua belas meter) atau paling tinggi 8 (delapan) lantai.
- 17. Bangunan Gedung Bertingkat Tinggi adalah bangunan yang mempunyai ketinggian lebih dari 24 M (dua puluh empat meter)dari permukaan/level akses kendaraan pemadam sampai dengan ketinggian 120 M (seratus dua puluh meter) atau paling tinggi 40 (empat puluh) lantai.
- 18. Zona Sistem Pipa Tegak adalah suatu bagian vertical suatu system Pipa Tegak yang dibatasi atau ditentukan oleh batasan tekanan (pressure limitations) dari Kompenen Sistem Pipa Tegak tersebut.
- 19. Pipa Utama (*Header*) adalah bagian dari Pipa Tegak yang menjadi penyalur utama air kepada satu atau lebih Pipa Tegak.
- 20. Pipa Cabang adalah suatu sistem pipa, pada umumnya berda pada suatu bidang mendatar (horizontal), yang menghubungkan tidak lebih dari satu sambungan slang (hose connection) dengan suatu Pipa Tegak.
- 21. Katup kendali adalah suatu katup yang mengendalikan air ke system proteksi kebakaran berbasias air. Katup-katup kendali tidak termaksud katup slang, katup uji pemeriksa, katup pengering, katup penyesuai (*trim valves*) untuk Pipa Tegak Kering, Katup Pra-aksi (*preaction*) dan Katup Sprinkler serentak (*deluge*), katup satu arah, atau katup pelepas tekanan.
- 22. Hidran Gedung adalah suatu fasilitas dalam bangunan gedung berupa kotak yang memiliki rak slang berukuran 65mm (enam puluh lima millimeter) dan atau 2½ (dua setengah inchi) dan atau 40 mm (empat puluh millimeter) dan atau 1½ (satu setengah inchi).

- 23. Rak Slang adalah suatu kotak rak (hose rack) yang digunakan untuk menyimpan peralatan pemadam kebakaran seperti slang, penggantung slang, nosel dan sambungan slang berukuran 40mm (empat puluh milimeter) dan atau 1½ (satu setengah inchi).
- 24. Sambungan Pemadam Kebakaran (Siamesse Connection) adalah suatu sambungan untuk Dinas yang digunakan untuk memompakan air kedalam Sistem Sprinkler, Sistem Pipa Tegak atau sistem lainnya yang menyediakan air untuk memadamkan kebakaran, unuk menambah (supplement) sistem penyediaan air yang sudah terpasang.
- 25. Kebutuhan Air/Sistem Demand adalah besarnya laju aliran air dan tekanan sisa yang dibutuhkan dari suatu penyediaan air, diukur pada titik sambungan dari penyediaan air kepada suatu Sistem Pipa Tegak pada slang yang secara hidrolik paling jauh dan laju aliran air minimum untuk sambungan sprinkler pada Sistem Kombinasi.
- 26. Penyediaan air adalah reservoir berupa tangki air yang khusus digunakan untuk memasok Sistem Pipa Tegak dan slang kebakaran serta hidran halaman.
- 27. Alarm Aliran Air dan pengawasan adalah alat yang dipasangkan pada Pipa Tegak yang berfungsi untuk mengawasi aliran air dalam system perpipaan.
- 28. Tekanan Sisa untuk Sistem Pipa Tegak adalah tekanan yang bekerja pada suatu titik dalam system tersebut dalam keadaan air sedang dialirkan.
- 29. Katup Slang adalah katup untuk sambungan slang individual.
- 30. Tekanan Statik untuk Sistem Pipa Tegak adalah tekanan yang bekerja pada suatu titik dalam sistem tersebut dalam keadaan air tidak dialirkan.
- 31. Alat Pengatur Tekanan/Pressure Regulating Device adalah suatu alat yang dirancangkan untuk mengurangi, mengatur (regulating), mengendalikan (controlling) atau membatasi tekanan air.
- 32. Pompa Kebakaran adalah pompa dengan karakteristik khusus untuk pemadam kebakaran sesuai standar.
- 33. Pompa Utama adalah pompa kebakaran utama.
- 34. Pompa Cadangan adalah pompa kebakaran cadangan.
- 35. Pompa Pancu adalah pompa yang berfungsi untuk mempertahankan tekanan yang diinginkan pada Sistem Pipa Tegak.
- 36. Kopling adalah suatu alat penghubung slang kebakaran untuk menjamin kontinuitas aliran air dari sumber air ke titik pancar (delivery point).

Tujuan Peraturan Walikota ini sebagai petunjuk persyaratan teknis dan prasyaratan minimum Sistem Pipa Tegak dan Slang Kebakaran serta Hidran Halaman untuk menjamin perlindungan terhadap gedung dan penghuni dari bahaya kebakaran.

#### Pasal 3

Ruang lingkup dalam Peraturan Walikota ini memuat persyaratan minimal yang harus dilaksanakan pada perancangan, pemasangan dan pemeliharaan Sistem Pipa Tegak dan Slang Kebakaran serta Hidran Halaman pada seluruh bangunan gedung. Bila ada persyaratan yang tidak diatur dalam Peraturan Walikota ini maka bangunan gedung wajib memakai peraturan yang lebih tinggi dari Peraturan Walikota ini atau peraturan internasional.

#### BAB II

# SISTEM PIPA TEGAK DAN SLANG KEBAKARAN SERTA HIDRAN HALAMAN

#### Pasal 4

Komponen Sistem Pipa Tegak dan Slang Kebakaran serta Hidran Halaman terdiri dari atas :

- a. Pipa Tegak
- b. Slang Kebakaran
- c. Hidran Halaman
- d. Penyediaan Air dan
- e. Pompa Kebakaran

## Pasal 5

Komponen sebagaimana dimaksud dalam pasal 4 harus mampu menerima tekanan kerja tidak kurang dari tekanan maksimum yang timbul pada lokasi terkait di dalam setiap kondisi sistem, termaksud tekanan yang terjadi bila pompa kebakaran dipasang permanen yang bekerja dengan katup tertutup.

### Pasal 6

Sistem Pipa Tegak terdiri atas:

- a. Pipa
- b. Penggantung Pipa
- c. Katup
- d. Hidran Gedung
- e. Sambungan Pemadam Kebakaran; dan
- f. Tanda Pengenal.

Perancangan Sistem Pipa Tegak ditentukan oleh tinggi bangunan gedung, klasifikasi hunian luas per-lantai, perancangan sarana jalan keluar (egress), persyaratan laju dan tekanan sisa dan jarak antara sambungan slang dengan sumber air.

Bagian Kesatu Klasifikasi Sistem Pipa Tegak Paragraf 1 Sistem Klas Pipa Tegak Pasal 8

Sistem Pipa Tegak terdiri atas:

- a. Sistem Kelas I;
- b. Sistem Kelas II;
- c. Sistem Kelas III; dan
- d. Sistem Kombinasi.

- (1) Sistem Kelas I sebagaimana dimaksud dalam Pasal 8 huruf a, merupakan Sistem Pipa Tegak yang menyediakan sambungan slang 65 mm (eman puluh lima milimeter) 2½ (dua setengah inchi) untuk menyediakan air yang hanya akan digunakan olehpetugas pemadam kebakaran atau mereka yang terlatih menggunakan pancaran air kuat.
- (2) Sistem Kelas II sebagaimana dimaksud dalam Pasal 8 huruf b, merupakan Sistem Pipa Tegak yang menyediakan sambungan slang 40 mm (empat puluh milimeter) dan atau 1½ (satu setengah inchi), disambungkan dengan slang yang disediakan dalam kondisi dilipat atau digulung untuk menyediakan air yang akan digunakan oleh petugas gedung atau orang yang terlatih menggunakan slang pemadam kebakaran.
- (3) Sistem Kelas III sebagaimana dimaksud dalam Pasal 8 huruf c, merupakan sistem Pipa Tegak yang menyediakan sambungan slang 40 mm (empat puluh milimeter) dan atau 1½ (satu setengah inchi), disambungkan dengan slang 65 mm (enam puluh milimeter) dan atau 2½ (dua setengah inchi), disambungkan dengan slang yang disediakan dalam kondisi dilipat atau digulung untuk menyediakan air yang akan digunakan memadamkan kebakaran.

(4) Sistem Kombinasi sebagaimana dimaksud dalam Pasal 8 huruf d, merupakan Sistem Pipa Tegak yang menyediakan air sekaligus untuk sambungan slang dan sprinkler otomatik dari 1 (satu) pompa dengan masing-masing pipa tegak (riser).

#### Pasal 10

Sambungan slang 65 mm (enam puluh lima milimeter) dan atau 2½ (dua setengah inchi) sebagaimana dimaksudkan dalam Pasal 9 ayat (1) harus menggunakan jenis yang sama dengan yang digunakan oleh Dinas dan hanya boleh digunakan oleh petugas Pemadam Kebakaran atau orang yang terlatih menggunakan pancaran air kuat.

#### Pasal 11

- (1) Sistem Kelas II sebagaimana dimaksud dalam Pasal 8 huruf b harus menyediakan Hidran Gedung dengan sambungan Slang berukuran 40 mm (empat puluh milimeter) dan/atau 1½ (satu setengah inchi) seperti yang disyaratkan dan ditempatkan sesuai standar sehingga semua bagian dari setiap lantai tidak boleh lebih dari 2 (dua) titik.
- (2) Jarak sebagaimana dimaksud pada ayat (1) harus diukur mengikuti jalan yang ditempuh mulai dari sambungan slang.
- (3) Hidran Gedung sebagaiman dimaksud pada ayat (1) yang behubungan dengan 1 (satu) Pipa Tegak pada setiap lantai tidak boleh lebih dari 2 (dua) titik.

## Pasal 12

- (1) Sistem Pipa Tegak Kelas III sebagaimana dimaksud dalam Pasal 8 huruf c harus menyediakan Hidran Gedung dan/atau sambungan slang yang disyaratkan untuk Kelas I dan Kelas II
- (2) Persyaratan sebagaimana dimaksud dalam Pasal 11 ayat (3) berlaku untuk Sistem Kelas III.

## Pasal 13

- (1) Ukuran Pipa Tegak dalam Sistem Kelas I dan Kelas III sekurangkurangnya 100 mm (serratus milimeter) dan/atau 4' (empat inchi).
- (2) Ukuran Pipa Cabang harus ditentukan berdasarkan kriteria hidrolik tetapi tidak kurang dari 65 mm (enam puluh lima milimeter) dan/atau 2½ (dua setengah inchi).

### Pasal 14

Sistem Pipa Tegak Kelas I dan Kelas III harus dirancang sesuai dengan standar sehingga seluruh kebutuhan air dapat dilayani oleh setiap sambungan pemadam kebakaran.

## Paragraf 2

## Tipe Sistem Pipa Tegak

## Pasal 15

Tipe Pipa Tegak dalam Sistem Pipa Tegak dan slang kebakaran serta Hidran Halaman meliputi:

- a. Pipa Tegak Basah; dan
- b. Pipa Tegak Kering.

#### Pasal 16

- (1) Sistem Pipa Tegak Basah sebagaiman dimaksud dalam Pasal 15 huruf a merupakan Sistem Pipa Tegak yang harus mampu menyediakan air untuk seluruh kebutuhan sistem.
- (2) Sistem Pipa Tegak Basah sebagaimana dimaksud pada ayat (1) harus harus dimungkinkan untuk menyediakan air bagi Sistem Pipa Tegak Kering pembantu (auxiliary) dengan syarat system penyediaan air mencukupi untuk dilayani kebutuhan Sistem Pipa Tegak Basah dan Sistem Pipa Tegak Kering.

## Pasal 17

- (1) Sistem Pipa Tegak Kering sebagaiman dimaksud dalam Pasal 15 huruf b merupakan Sistem Pipa Tegak Kering yang tidak mempunyai penyediaan air yang terpasang tetap atau permanen.
- (2) Sistem Pipa Tegak Kering yang telah terpasang harus dilengkapi dengan Sistem Sprinkler dan harus mendapat persetujuan dari Dinas.

## Bagian Kedua

## Sistem Pipa Tegak pada Bangunan Gedung

- (1) Bangunan Gedung yang mempunyai akses dari lantai dasar atau dari permukaan jalan yang lebih dari 1 (satu) maka pengukuran ketinggian diambil dari permukaan jalan atau jalan akses mobil pemadam kebakaran.
- (2) Ketinggian Gedung sebagaimana dimaksud pada ayat 1 (satu) rupakanjarak vertikal yang diukur dari ketinggian rata-rata lantai dasar atau jalan di luar gedung ke lantai tertinggi yang dapat dihuni.

Jumlah dan susunan peralatan Sistem Pipa Tegak yang diperlukan untuk proteksi kebakaran pada suatu bangunan gedung harus memperhatikan kondisi lokal, seperti :

- a. Jenis Hunian;
- b. Karakten dan konstruksi bangunan gedung; dan
- c. Ases ke dalam bangunan gedung.

## Pasal 20

- (1) Pipa Tegak pada Sistem Pipa Tegak yang harus dipasang pada bangunan gedung bertingkat rendah dan sedang dengan luas lantai 1.000 m² (seribu meter persegi)dengan ancaman bahaya kebakaran ringan, berjumlah paling sedikit 1 (satu) buah dengan penambahan paling sediki 1 (satu) buah Pipa Tegak untuk penambahan luas 1.000 m² (seribu milimeter persegi) berikutnya;
- (2) Pipa Tegak pada Sistem Pipa Tegak yang harus dipasang pada bangunan Gedung bertingkat rendah dan sedang dengan luas lantai 800 m² (delapan ratus meter persegi) dengan ancaman bahaya kebakaran sedang berjumlah paling sedikit 1 (satu) buah dengan penambahan paling sedikit 1 (satu) buah pipa tegak setiap penambahan luas 600 m² (enam ratus meter persegi).
- (3) Pipa Tegak pada Sistem Pipa Tegak yang harus dipasang pada bangunan gedung bertingkat rendah dan sedang dengan luas lantai 600 m² (enam ratus meter persegi) dengan ancaman bahaya kebakaran berat berjumlah paling sedikit 1 (satu) buah dengan penambahan paling sedikit 1 (satu) buah pipa tegak pada setiap penambahan luas 600 m² (enam ratus meter persegi).
- (4) Jumlah Pipa Tegak pada Sistem Pipa Tegak bangunan gedung bertigkat tinggi mengikuti ketentuan teknis pada ayat (1), ayat (2) dan ayat (3) dengan tetap mempertimbangkan ketentuan teknis lainnya terkait proteksi kebakaran aktif dan pasif pada bangunan bertingkat tinggi.

- (1) Bangunan Gedung bertingkat rendah, sedang dan tinggi yang disyaratkan memakai Sistem Pipa Tegak seperti yang dimaksudkan dalam pasal 20 harus memasang Sistem Kelas III dengan Tipe Pipa Tegak Basah.
- (2) Sistem Pipa Tegak dan Selang Kebakaran dan Hidran Halaman untuk fasilitas rumah tahanan dan Lembaga permasyarakatan yang baru

- dan yang sudah ada harus sesuai dengan ketentuan sebagaimana dimaksud pada ayat (1).
- (3) Persyaratan sebagaiman dimaksud pada ayat (1) tidak berlaku bila telah memenuhi ketentuan berikut;
  - a. slang kebakaran gulung (*hose reel*) diameter 40 mm (empat puluh milimeter) dalam gulungan untuk perlindungan kelas II dengan persetujuan dinas; dan
  - b. sistem terpisah kelas i dan kelas ii sebagai pengganti sistem kelas III dengan persetujuan dinas.

Sistem Pipa Tegak Kering dapat dipasang pada bangunan gedung bertingkat rendah yang tidak disyaratkan untuk memakai Sistem Pipa Tegak Basah sebagaimana yang dimaksud dalam pasal 21.

#### Pasal 23

Pipa tegak apabila terdapat 2 (dua) atau lebih yang dipasang dalam sebuah bangunan gedung, atau bagian bangunan gedung, maka pipa dimaksud harus saling berhubungan.

#### Pasal 24

Pipa tegak apabila dilayani oleh tangki yang dipasang di puncak Gedung atau zona, maka harus memenuhi kriteria sebagai berikut ini;

- a. Semua Pipa Tegak tersebut harus saling terhubung di puncak; dan
- b. Katup searah harus dipasang pada dasar setiap pipa tegak utuk mencegah sirkulasi air.

#### BAB III

# PERSYARATAN SISTEM PIPA TEGAK DAN SLANG KEBAKARAN SERTA HIDRAN HALAMAN

Pipa Tegak
Paragraf 1
Pipa

- (1) Pipa yang digunakan dalam Sistem Pipa Tegak harus dibuat dari baja atau tembaga sesuai ketentuan standar yang berlaku.
- (2) Ukuran diameter dalam dan tebal dinding pipa sebagaiman dimaksud pada pasal 25 ayat (1) harus sesuai dengan standar yang berlaku.

(3) Dalam hal kemajuan teknologi bahan pipa sebagaimana dimaksud pada pasal 25 ayat (1), Kepala Dinas dapat mengambil kebijakan untuk menyetujui penggunaan pipa bukan logam pada bagian tertentu dari Sistem Pipa Tegak selama dapat dibuktikan bahwa pemasangan pipa pada bagian tertentu tidak memperlemah sistem secara keseluruhan.

#### Pasal 26

- (1) Pembengkokan pipa baja skedul 40 (empat puluh) dan jenis K dan L untuk tabung tembaga diperbolehkan bila dibuat dengan tanpa menekuk, merusak, mengurangi diameter atau penyimpangan lain dari bentuk bulat pipa lurus.
- (2) Dalam hal pembengkokan sebagaimana dimaksud pada ayat (1), jarijari belokan minimum harus 6 (enam) kali diameter pipa untuk ukuran 50 mm (lima puluh milimeter) dan/atau 2" (dua inchi) dan yang lebih kecil dan 5 (lima) kali diameter pipa untuk ukuran 65 mm (enam puluh lima milimeter) dan/atau 2½ (dua setengah inchi) dan yang lebih besar.

#### Pasal 27

- (1) Penyambungan pipa dan komponen dengan las harus memakai metode pengelasan yang memenuhi standar yang berlaku;
- (2) Semua pipa dan alat penyambung yang pembulatannya diulir harus sesuai standar penggunaan pita (*tape*) atau bahan sejenisnya harus dipakai hanya pada ulir luar (*male thread*).

#### Pasal 28

Perpipaan bawah tanah yang melayani Sistem Pipa Tegak harus dikuras (flushed) sesuai ketentuan standar yang berlaku.

### Paragraf 2

## Penggantung Pipa

- (1) Penggantung dan penopang seluruh Sistem Pipa Tegak harus direncanakan dengan memperhatikan beban seismik.
- (2) Penggantung dan penopang sebagaiman dimaksud pada ayat (1) harus dirancang mampu menahan 5 (lima) kali berat pipa berisi air ditambah 114 kg (seratus empat belas kilogram) pada masing-masing titik penahan perpipaan.

Perpipaan sistem pipa pemadam kebakaran dan penggantungnya tidak digunakan untuk menggantung pipa dari sitem lain.

## Pasal 31

Apabila ada bagian perpipaan yang dipasang di bawah saluran udara (ducting) maka penggantung pipa sebagaiman dimaksud dalam Pasal 29 harus dipasang langsung kepada struktur bangunan.

### Pasal 32

- (1) Pipa Tegak harus ditempatkan di dalam cerobong tertutup tangga keluar atau harus diproteksi dengan tingkat ketahanan api yang sama dengan yang disyaratkan untuk cerobong tertutup tangga keluar di dalam bangunan gedung
- (2) Apabila tangga kebakaran tidak disyaratkan untuk diproteksi dengan konstuksi tahan api, maka Sistem Pipa Tegak diperbolehkan untuk dipasang tanpa prasaratan ketahanan api sebagaimana dimaksud pada ayat (1).

#### Pasal 33

Perpipaan Sistem Pipa Tegak harus dilindungi terhadap kerusakan mekanik dan tidak boleh dipasang dalam daerah konstruksi mudah terbakar yang tidak dilindungi oleh Sistem Spinkler.

#### Pasal 34

- (1) Pipa Lateral yang menyambung ke sambungan slang 65 mm (enam puluh lima milimeter) dan/atau 2½ (dua setengah inchi) tidak harus diproteksi pada bangunan gedung yang diproteksi oleh Sistem Sprinkler Otomatik yang disetujui Dinas.
- (2) Pipa Lateral pada bangunan gedung sebagaimana yang dimaksud pada ayat (1) yang menyambungkan Pipa Tegak dengan sambungan slang 40 mm (empat puluh milimeter) dan/atau 1½(satu setengah inchi) tidak harus diproteksi.

## Pasal 35

Pipa Tegak Kering tidak boleh tersembunyi kecuali bila keseluruhan sistem pemimpinan dapat dipantau dengan pengawasan tekanan udarah menurut standar yang berlaku.

## Paragraf 4

### Batas Tekanan Pipa

#### Pasal 36

Tekanan maksimum pada titik manapun dalam sistem tidak boleh lebih dari 24 (dua puluh empat) bar dan/atau 350 (tiga ratus lima puluh) psi.

- (1) Dalam hal pipa utama memasok air ke zona pipa tegak lebih tinggi,maka diizinkan bertekanan lebih dari 24 (dua puluh empat) bar dan/atau 350 (tiga ratus lima puluh) psi sesuai dengan kemampuan bahan dan fitting.
- (2) Pada Pipa Utama pemasok air ke zona pipa tegak lebih tinggi bagaimana dimaksud pada ayat (1), tidak boleh ada sambungan slang dibagian mana pun pada sistem yang bertekanan lebih dari 24 (dua puluh empat) bar dan/atau 350 (tiga ratus lima puluh)psi.

Sistem Pipa Tegak Kering harus dirancang untuk menyediakan tekanan 6,9 (enam koma sembilan) bar dan/atau 100 (seratus) psi pada sambungan slang elevasi tertinggi, dengan perhitungan berakhir pada sambungan pemadam kebakaran.

## Paragraph 5

## Pipa Pembangunan untuk Pengaturan

#### Pasal 39

- (1) Apabila Sistem Pipa Tegak dan Slang Kebakaran serta Hidran Halaman dilengkapi dengan peralatan pengatur tekanan maka keperluan pengaturan (setting) sebuah pipa pembangunan (drain) harus dipasang secara permanen.
- (2) Pipa Pembuangan (*drain*) sebagaiman dimaksud pada ayat (1) harus memiliki ukuran paling kurang 3; (tiga inchi) dan berhubungan dengan setiap pipa tegak.

## Pasal 40

Pipa Penghubung antara Pipa Pembuangan dengan Pipa Tegak harus dilengkapi dengan katup

## Paragraf 6

#### Katup

#### Pasal 41

(1) Katup-katup harus dipasang dalam Sistem Pipa Tegak agar dapat menutup semua pipa tegak tanpa mengganggu aliran air pada pipa tegak lainnya dari penyediaan air yang sama.

(2) Katup yang dapat menutup aliran air dari sambungan pemadam kebakaran kepipa tegak tidak boleh dipasang pada instansi sambungan.

#### Pasal 42

Katup satu arah (*check valve*) harus dipasang pada setiap sambungan pemadam kebakaran dan ditempatkan sedekat mungkin pada lokasi sambungan kesistem.

#### Pasal 43

- (1) Katup berpetunjuk (*indicating valve*) harus dipasang pada Pipa Tegak untuk mengendalikan pipa cadangan ke sambungan slang yang jauh (*remote*).
- (2) Katup petunjuk (*indicating valve*) sebagaiman dimaksud pada ayat (1) harus dilengkapi sambungan Sistem Pipa Tegak yang terhubung dengan Sistem Penyediaan Air dan dipasang dekat dengan penyediaan air seperti pada sisi keluar tangki atau sisi keluar pompa untuk menutup sistem dari penyediaan air.

## Pasal 44

- (1) Saat Sistem Pipa Tegak dipasok air dari pipa utama halaman utama atau pipa utama (header) dari gedung lain maka sambunga tersebut harus dilengkapi dengan katup petunjuk yang dipasang diluar gedung pada jarak yang aman.
- (2) Dalam hal katup berpetunjuk pada sambungan kepasokan air tidak dapat ditempatkan minimal 12,2 m (dua belas koma dua meter) dari bangunan gedung maka katup tersebut harus dipasang pada lokasi yang mudah dicapai pada waktu kebakaran dan terlindung dari kerusakan serta disetujui oleh Dinas.
- (3) Dalam hal katup dengan tiang petunjuk (post-indicator valve) tidak dapat digunakan maka dipasang katup biasa dalam bak kontrol.

#### Pasal 45

Katup pada Sistem Kombinasi harus memenuhi ketentuan sebagai berikut.

a. Setiap penyambungan dari suatu pipa tegak yang menjadi bagian dari sebuah Sistem Kombinasi ke Sistem Sprinkler harus dipasang Katup Kendali dan katup 1 (satu) arah dengan ukuran yang sama dengan penyambung tersebut; dan

b. Sebuah Alat Pengukur Tekanan (pressure-regulating device) yang mencegah aliran balik harus dianggap sebagai katup 1 (satu) arah dan tidak diperlukan tambahan katup 1 (satu) arah.

### Pasal 46

- (1) Semua katup kendali yang mengontrol sambungan ke pasokan air dan pipa tegak harus dari jenis katup petunjuk yang terdaftar.
- (2) Katup kendali sebagaimana dimaksud pada ayat (1) tidak boleh ditutup dengan cepat, mulai dari keadaan terbuka penuh dalam waktu kurang dari 5 (lima) detik.

#### Pasal 47

- (1) Katup untuk sistem penyediaan air, katup kendali isolasi dan katup lain dalam aliran utama pasokan air, harus disupervisi dalam posisi terbuka dengan cara lain:
  - a. menempatkan sebuah sinyal suara pada lokasi yang selalu dijaga petugas;
  - b. mengunci katup pada posisi terbuka yang berpagar dalam kendali pemilik gedung.
- (2) Katup bypass pada ayat (1) harus diawasi pada posisi tertutup.

## Paragraf 7

### Tanda Identifikasi Katup

### Pasal 48

- (1) Semua Katup, termaksud Katup Kendali, Katup Pengering dan Katup Sambungan test harus diberi tanda yang jelas untuk menunjukkan Sistem yang dilayani.
- (2) Katup Kendali, Katup Pengering dan Katup Sambungan test sebagaimana dimaksud pada ayat (1) harus diberi tanda sesuai dengan fungsinya.
- (3) Katup Kendali sebagaimana dimaksud pada ayat (2) untuk sistem utama dan bagian sistem, termaksud katup kendali penyediaan air, harus diberi tanda yang menyatakan bagian yang dikendalikan oleh katup tersebut dalam sistem.

### Pasal 49

Apabila sebuah katup kontrol sistem utama atau bagian sistem ditempatkan di dalam ruang tertutup atau tersembunyi, maka harus diberikan sebuah tanda dilokasi katup yang mudah terlihat dari pintu luar dan/atau dekat bukaan ke ruang penempatan katup.

Bila perpipaan sistem Sprinkler pada Sistem Kombinasi dipasok oleh lebih dari 1 (satu) pipa tegak, harus dipasang sebuah tanda yang menunjukkan lokasi katup tambahan pada setiap sambungan dual atau multiple feed ke Pipa Tegak Sistem Kombinasi tersebut untuk menunjukan bahwa saat mengisolasi Sistem Sprinkler yang dilayani oleh katup kendali tersebut, sebuah katup kendali tambahan atau katup pipa tegak lain harus ditutup.

## Pasal 51

Dalam hal tersedianya lemari katup, maka harus diberi daftar isinya.

#### Pasal 52

Huruf tanda identifikasi katup harus dibuat dengan warna merah di atas dasar warna putih dan mudah terlihat.

## Paragraf 8

#### Hidran Gedung

#### Pasal 53

- (1) Hidran Gedung harus berupa lemari tertutup yang memiliki rak slang dengan ukuran sesuai standar agar tidak mengganggu pada waktu penyambung slang sehingga dapat digunakan dengan cepat pada saat terjadi kebakaran.
- (2) Hidran Gedung sebagaimana dimaksud pada ayat (1) hanya digunakan untuk menempatkan peralatan dan harus diberi tanda untuk menunjukkan isinya.
- (3) Setiap Hidran Gedung sebagaimana dimaksud pada ayat (1) harus dicat warna dasar merah dengan tulisan warna putih, sebagaimana tercantum dalam standar 1 Lampiran Peraturan Walikota ini.
- (4) Hidran Gedung sebagaimana dimaksud pada ayat (1) bila selalu terkunci harus menggunakan tutup berupa panel kaca dan diletakkan dengan aman dan tak jauh dari area panel kaca.

#### Pasal 54

(1) Hidran Gedung yang harus dimiliki Sistem Pipa Tegak Kelas I dan Kelas III yang disyaratkan dalam suatu bangunan gedung bertingkat rendah, sedang dan tinggi paling sedikit harus berjumlah sesuai dengan jumlah tangga kebakaran yang disyaratkan untuk bangunan gedung tersebut sesuai beban huniannya.

- (2) Hidran Gedung pada bangunan gedung sebagaimana dimaksud pada ayat (1) harus ditempatkan sesuai dengan ketentuan sebagaimana berikut:
  - a. Dalam suatu lobi stop asap; dan
  - b. Dalam daerah umum tetapi di dalam staf yang terlindung serta sedekat mungkin dengan tangga keluar jika tidak ada lobi stop asap serta harus diberikan sebuah tanda yang mudah terlihat dari pintu luar dan/atau dekat bukaan ke ruang penyimpanan hidran gedung untuk mengindentifikasi lokasi sambungan slang.
- (3) Hidran Gedung sebagaimana dimaksud pada ayat (1) tidak boleh terhalang dan harus dipasang tidak kurang dari 90 cm (Sembilan puluh sentimeter) dan tidak lebih dari 150 cm (seratus lima puluh sentimeter) dari permukaan lantai.

Hidran Gedung yang menembus suatu konstuksi tahan api maka tingkat kesehatan api dari konstruksi harus dijaga sesuai yang dipersyaratkan oleh ketentuan teknis bangunan gedung didaerah.

## Pasal 56

Di dalam Hidran Gedung, sambungan slang dan tuas putar katup harus ditempatkan dengan jarak paling sedikit 25 mm (dua puluh lima milimeter) dari bagian lemari sehingga memudahkan pembukaan dan penutupan katup sambungan slang.

## Pasal 57

Sambungan slang dan slang ukuran paling sedikit 25 mm (dua puluh lima milimeter) dan/atau 1' (satu inchi) boleh digunakan pada bangunan eksisting yang telah dilakukan pengkajiaan teknis dan disetujui oleh dinas.

### Pasal 58

Setiap sambungan slang Sistem Pipa Tegak Kering dalam Hidran Gedung harus dipasang tanda yang jelas dengan tulisan : "PIPA TEGAK KERING MANUAL HANYA UNTUK DINAS PEMADAM KEBAKARAN

## Paragraf 9

## Sambungan Pemadam Kebakaran (Siamesse Connection)

#### Pasal 59

- (1) Ukuran dan jenis Sambungan Pemadam Kebakaran yang tersedia pada bangunan gedung harus sama dengan yang digunakan oleh Dinas;
  - a) Jenis Sambungan Pemadam Kebakaran sebagaimana dimaksud pada ayat (1) harus memenuhi ketentuan :
    - untuk pipa berdiameter 100 mm (seratus milimeter) dan/atau 4" (empat inchi) harus dari tipe 2 (dua) masukan (two ways breeching inlet); atau
    - untuk pipa tegak berdiameter 150 mm (seratus lima puluh milimeter) dan/atau 6" (enam inchi) harus dari jenis/tipe 4 (empat) masukan (four ways breeching inlet).

## Pasal 60

Bangunan Gedung yang mempunyai ketinggian yang paling rendah 24 m (dua puluh empat meter) dari permukaan /level akses kendaraan Pemadam harus dilengkapi paling sedikit 2 (dua) Sambungan Pemadam Kebakaran yang terpisah jauh (remotely located) untuk setiap zona.

#### Pasal 61

- (1) Setiap zona pada Sistem Pipa Tegak Kelas I atau Kelas III harus menyediakan 1 (satu) atau lebih Sambungan Pemadam Kebakaran.
- (2) Sambungan Pemadam Kebakaran sebagaiman dimaksud pada ayat (1) harus dari jenis yang terdaftar agar tekanan kerjanya dapat sama atau lebih besar dari tekanan yang dipersyaratkan oleh kebutuhan Sistem.

## Pasal 62

Sambungan Pemadam Kebakaran harus ditempatkan sesuai ketentuan sebagai berikut:

- a. Mudah diakses oleh mobil Pemadam Kebakaran dengan jarak yang paling jauh 18 m (delapan belas meter) dan ditempatkan sesuai standar sehingga slang dapat dipasang tanpa terhalang barang lain termaksud bagian gedung, pagar, tiang, tanaman, kendaraan atau sambungan lainnya;
- b. Dipasang pada jarak paling jauh 12 m (dua belas meter) ke pipa tegak yang dilayani;
- c. Ditempatkan lebih dari 30 m (tiga puluh meter) dari Hidran kota terdekat: dan/atau

d. Ditempatkan tidak kurang dari 45 cm (empat sentimeter) dan tidak lebih dari 120 cm (seratus dua puluh sentimeter) diatas tanah, trotoar atau perkerasan terdekat.

### Pasal 63

- (1) Sambungan Pemadam Kebakaran harus dipasang dengan ketentuan sebagai berikut;
  - a. untuk sistem pipa tegak basah dipasang pada sisi sistem dari katup control, katup satu arah atau pompa manapun dan pada sisi penyediaan sebelum katup pemisah (isolating valve): dan/atau
  - b. untuk sistem pipa tegak kering, dipasang langsung pada pipa sistem.
- (2) Sambungan Pemadam Kebakaran sebagaiman dimaksud pada ayat (1) tidak boleh dipasang katup yang dapat menutup dari Sistem Pipa Tegak.

#### Pasal 64

Setiap Sambungan Pemadam Kebakaran hanya diperbolehkan melayani 1 (satu) Sistem Pipa Tegak dengan luas bangunan gedung dan/atau kumpulan bangunan paling besar 10.000 m² (sepuluh ribu meter persegi).

#### Pasal 65

Pada Sambungan Pemadam Kebakaran harus tersedia tulisan yang memuat informasi sebagai berikut:

- a. Zona Pipa Tegak yang dilayani;
- b. Sistem Pipa Tegak atau gabungan dengan sistem sprinkler; dan
- c. Tekanan kebutuhan sistem yang harus disuplai dari mobil pompa.

- (1) Setiap Sambungan Pemadam Kebakaran harus diberi tanda tertulis : "PIPA TEGAK" dengan keterangan besarnya tekanan yang harus disuplai dari mobil Pemadam Kebakaran.
- (2) Apabila sprinkler otomatik dikombinasikan dengan Sistem Pipa Tegak maka setiap Sambungan Pemadam Kebakaran harus diberi tanda tulisan : "PIPA TEGAK DAN SPRINKLER OTOMATIK" dengan keterangan besarnya tekanan yang harus disuplai dari mobil Pemadam Kebakaran.
- (3) Apabila Sambungan Pemadam Kebakaran melayani beberapa bangunan gedung, konstruksi atau lokasi, tanda sebagaiman dimaksud pada ayat (1) dan ayat (2) harus menyatakan gedung, konstruksi atau lokasi mana yang dilayani sambungan tersebut.

(4) Tulisan tanda pada ayat (1), ayat (2) dan ayat (3) harus dibuat dengan tinggi huruf paling rendah 2,5 cm (dua koma lima sentimeter).

#### Pasal 67

Sambungan Pemadam Kebakaran harus diuji dengan menggunakan mobil pompa Pemadam Kebakaran pada saat pemeriksaan kondisi keselamatan bangunan gedung.

## Paragraph 10

#### Tanda Pengenal

#### Pasal 68

Bagian penting dalam Sistem Pipa Tegak harus diberi tanda pengenal yang dibuat dari pelat logam atau bahan plastic kaku tahan cuaca.

## Bagian Kedua

#### Slang Kebakaran

#### Pasal 69

Salng Kebakaran yang disediakan dalam Hidran Gedung pada Sistem Kelas III harus berukuran 40 mm (empat puluh milimeter) dan/atau 1½" (satu setengah inchi) dan dipasang dengan panjang yang tidak lebih dari 30 m (tiga puluh meter), lurus dan dapat dilipat.

#### Pasal 70

Dalam bangunan gedung dengan fungsi huniaan pertemuan yang sudah ada atau baru, panggung biasa dengan luas lebih dari 93 m² (Sembilan puluh tiga meter persegi) dan/atau 1½ (satu setengah inchi) untuk pertolongan awal Pemadam Kebakaran pada kedua sisi panggung.

## Bagian Ketiga

#### Hidran Halaman

- (1) Penempatan Hidran Halaman pada bangunan Gedung harus memenuhi ketentuan berikut:
  - a. berdekatan dengan pintu masuk atau posisi yang dapat dimasuki oleh mobil tangga/mobil pompa dinas;
  - b. berada dalam daerah jangkauan/perimeter bangunan gedung, pada jarak paling jauh 150 m (seratus lima puluh meter) dari jalan masuk kesetiap bangunan gedung; dan
  - c. tidak terhalang oleh kegiatan parker, bongkar muat, pertamanan dan kegiatan lain.

- (2) Jarak paling jauh antara Hidran Halaman sebagaiman dimaksud pada ayat (1) adalah 150 m (seratus lima puluh meter) tidak boleh ditempatkan pada jarak kurang dari bangunan gedung.
- (3) Ketika diperlukan lebih dari 1 (satu) Hidran Halaman, maka Hidran harus diletakan disepanjang jalur akses mobil pemadam sehingga tiap bagian dari jalur tersebut masih berada dalm jarak radius 50 m (lima puluh meter) dari Hidran Halaman.

Pasokan air untuk Hidran Halaman harus paling sedikit 38 (tiga puluh delapan) liter/detik pada tekanan 3,5 (tiga koma lima) bar serta mampu mengalirkan air paling sedikit selama 30 (tiga puluh) menit.

#### Pasal 73

- (1) Pada kontak Hidran Halaman harus dilengkapi dengan tulisan "HIDRAN KEBAKARAN" warna putih paling rendah berukuran 50 mm (lima puluh milimeter) huruf balok di atas warna dasar merah.
- (2) Kotak Hidran Halaman sebagaimana dimaksud pada ayat (1) harus mudah dibuka untuk penggunaan sewaktu-waktu dan harus terlindung dari kerusakan.

## Bagian Keempat

## Penyediaan Air

## Pasal 74

- (1) Sistem Pipa Tegak Basah harus dihubungkan dengan penyediaan air yang mampu memenuhi kebutuhan sistem.
- (2) Penyediaan air sebagaimana dimaksudkan pada ayat (1) berupa:
  - a. pompa otomatik yang disambungkan dengan sumber air sesuai standar; dan/atau
  - tangki gravitasi yang mampu menyediakan laju aliran dan tekanan air yang sesuai standar.
- (3) Setiap penyediaan air sebagaiamana dimaksud pada ayat (1) harus dilengkapi dengan katup berpetunjuk dan dipasang pada lokasi yang disetujui.

#### Pasal 75

Dalam hal penyediaan air untuk Sistem Pipa Tegak Basah yang disyaratkan pada Sistem Pipa Tegak Kelas I atau Kelas III, maka Sistem Pipa Tegak harus dirancang sesuai standar sehingga kebutuhan air dapat disediakan secara terpisah dari penyediaan air lainnya dan tersambung dengan Sambungan Pemadam Kebakaran.

Apabila suatu Sistem Pipa Tegak Basah yang sudah terpasang dengan diameter paling sedikit 100 mm (seratus milimeter) dan/atau 4½ (empat setengah inchi) akan dimanfaatkan untuk menyediakan air pada sistem sprinkler baru di gedung yang sama (retrofit) maka selama syarat kapasitas penyediaan air untuk sistem sprinkler terpenuhi, sistem sprinkler tersebut harus dilengkapi katup dan mendapat persetjuan Dinas.

#### Pasal 77

- (1) Pompa kebakaran harus didukung oleh sistem penyediaan air yang handal, baik kuantitas maupun kualitasnya.
- (2) Kuantitas penyediaan air sebagaimana dimaksud pada ayat (1) harus disesuaikan dengan klasifikasi ancaman bahaya kebakaran yang diproteksi dengan ketentuan sebagaiberikut;
  - a. Paling sedikit 45 (empat puluh lima) menit sesuai kapasitas pompa untuk bahaya kebakaran ringan; dan/atau
  - b. Paling sedikit 60 (enam puluh) menit sesuai kapasitas pompa untuk bahaya kebakaran sedang dan berat.

### Pasal 78

- (1) Penyediaan air untuk Sistem Pipa Tegak Kering harus berdekatan dengan Sambungan Pemadam Kebakaran.
- (2) Penyediaan air sebagaimana dimaksud pada ayat (1) tidak diperbolehkan digabung dengan sistem pipa domestik, kecuali tersedia pembatas volume air.

### Paragraf 1

#### Tekanan Sisa

#### Pasal 79

Sistem Pipa Tegak yang dirancang dengan perhitungan Hidrolik harus dirancang untuk menyediakan air pada laju aliran yang disyaratkan dengan tekanan sisa paling sedikit:

- a. 6,9 (enam koma Sembilan) bar dan/atau 100 (seratus) psi pada keluaran sambungan slang ukuran 65 mm (enam puluh lima milimeter) dan/atau 2½ (dua setengah inchi) yang secara Hidrolik terjauh; dan/atau
- b. 4,5 (empat koma lima) bar dan/atau 65 (enam puluh lima) psi pada keluaran sambungan slang ukuran 40 mm (empat puluh empat milimeter) dan/atau 1½ (satu setengah inchi) yang secara hidrolik terjauh.

- (1) Dalam hal tekanan sisa pada sambungan slang 40 mm (empat puluh milimeter) dan/atau 1½ (satu setengah inchi) melebihi 6,9 (enam koma sembilan) bar dan/atau 100 (seratus) psi, harus dipasang suatu alat pengatur tekanan yang disetujui oleh Dinas untuk membatasi tekanan sisa menjadi 6,9 (enam koma Sembilan) bar dan/atau 100 (seratus) psi dalam laju aliran yang dipersyaratkan.
- (2) Dalam hal tekanan sisa pada suatu sambungan slang melebihi 12,1 (dua belas koma satu) bar dan/atau 175 (seratus tujuh puluh lima) psi, maka harus dipasang suatu alat pengatur tekanan yang disetujui oleh Dinas untuk membatasi tekanan statik dan tekanan sisa pada keluaran sambungan slang tersebut sehingga menjadi 6,9 (enam koma Sembilan) bar dan/atau 100 (seratus) psi untuk sambungan slang 40 mm (empat puluh milimeter) dan/atau 1½ (satu setengah inchi) dan menjadi 12,1 (dua belas koma satu inchi) bar dan/atau 175 (seratus tujuh puluh lima) psi untuk sambungan slang lainnya.

# Paragraf 2 Laju Aliran Air Pasal 81

Laju aliran air pada Sistem Pipa Tegak Kelas I dan Kelas III paling sedikit harus memenuhi ketentuan berikut:

- a. Besarnya laju aliran air untuk pipa tegak yang secara perhitungan Hidrolik terjauh, paling sedikit harus 1.893 (seribu delapan ratus Sembilan puluh tiga) liter/menit dan/atau 500 (lima ratus) galon per menit, melalui dua keluaran (outlets) berdiameter 65 mm (enam puluh lima milimeter) dan/atau 2½ (dua setengah inchi) pada lokasi terjauh; dan
- b. Dalam hal pipa tegak horizontal melayani 3 (tiga) atau lebih sambungan slang pada lantai manapun, laju aliran untuk pipa tegak horizontal paling sedikit 750 (tujuh ratus lima puluh) galon per menit dan/atau 2.840 (dua ribu delapan ratus empat puluh) liter/menit dengan perhitungan hidrolik yang sesuai standar.

#### Pasal 82

Laju aliran air untuk pipa tegak tambahan pada Sistem Pipa Tegak Kelas I dan Kelas III paling sedikit harus memenuhi ketentuan berikut:

a. Bangunan gedung dengan luas setiap lantai tidak lebih dari 7.432 m² (tuju ribu empat ratus tiga puluh dua meter persegi), laju aliran untuk pipa tegak tambahan harus paling sedikit 946 L/menit (Sembilan

- ratus empat puluh enam liter per menit) dan/atau 250 gpm (dua ratus lima puluh gallon per menit) untuk setiap pipa tegak berikutnya; atau
- b. Bangunan gedung yang luas setiap lantainya melebihi 7.432 m² ( tuju ribu empat ratus tiga puluh dua meter persegi) serta tidak diproteksi dengan sprinkler, laju aliran untuk setiap pipa tegak tambahan harus paling sedikit 1.893 L/menit (seribu delapan ratus sembilan puluh tiga liter per menit) dan/atau 500 gpm (lima ratus gallon per menit) untuk pipa kedua dan 946 L/menit (Sembilan ratus empat puluh enam liter per menit) dan/atau 250 gpm (dua ratus lima puluh gallon per menit) untuk pipa tegak ketiga apabila laju aliran diperlukan.

Laju aliran harus ditambahkan hanya untuk pipa tegak yang berada pada lantai yang dihitung saja dan sesuai dengan ketentuan berikut:

- a. Dalam hal pipa tegak horizontal pada Sistem Kelas I dan Kelas III yang mengalirkan air menuju 3 (tiga) atau lebih sambungan slang, maka perhitungan Hidrolik dan ukuran pipa untuk setiap pipa tegak harus berdasarkan pada tersedianya aliran air sebesar 946 L/menit (Sembilan ratus empat puluh enam liter per menit) dan/atau 250 gpm (dua ratus lima puluh gallon per menit) dengan tekanan sisa sesuai standar pada 3 (tiga) sambungan slang yang secara hidrolik terjauh pada pipa tegak tersebut dan pada keluaran elevasi tertinggi untuk setiap pipa tegak yang lainnya;
- b. Pipa bersama penyediaan air (common supply pipe) harus dihitung dan ditentukan ukurannya untuk menyediakan laju aliran air yang dibutuhkan oleh semua pipa tegak yang disambung ke pipa bersama tersebut, dengan jumlah yang sesuai standar; dan
- c. Besarnya laju aliran air sesuai persyaratan di dalam pipa tegak lainnya dan tidak perlu diseimbangkan ke tekanan yang lebih tinggi pada titik sambungan.

#### Pasal 84

Laju aliran air pada Sistem Pipa Tegak Kelas I dan Kelas III paling banyak harus memenuhi ketentuan berikut:

a. Untuk gedung yang dilindungi seluruhnya oleh sistem sprinkler otomatik besarnya laju aliran air tidak boleh lebih dari 3.785 L/menit (tiga ribu tuju ratus delapan puluh lima liter per menit) dan/atau 1.000 gpm (seribu galon per menit).

b. Untuk gedung yang tidak seluruhnya dilindungi sistem sprinkler otomatik besarnya laju aliran air tidak boleh lebih dari 4.731 L/menit (empat ribu tujuh ratus tiga puluh satu liter per menit) dan/atau 1.250 gpm (seribu dua ratus lima puluh galon per menit).

### Pasal 85

Perhitungan Hidrolik dan ukuran setiap pipa tegak harus berdasarkan kepada tersedianya aliran air sebesar 946 L/menit (Sembilan ratus empat puluh enam liter per menit) dan/atau 250 gpm (dua ratus lima puluh liter per menit) dengan tekanan sisa sesuai persyaratan pada:

- a. 2 (dua) sambungan slang terjauh secara hidrolik yang terpasang pada pipa tegak tersebut: dan
- Sambungan slang yang berlokasi dilantai/levasi tertinggi untuk setiap pipa tegak lainnya.

#### Pasal 86

- (1) Bangunan gedung yang tidak diproteksi oleh sistem sprinkler otomatik maka alarm aliran air dan pengawasan harus dipasang pada Sistem Pipa Tegak Basah.
- (2) Alarm aliran air dan pengawasan sebagaimana dimaksud pada ayat
  (1) untuk jenis dayung (paddle-type weterflow alarm) hanya dipasang pada Sistem Pipa Tegak Basah.
- (3) Pengujian alarm air dan pengawasan sebagaimana dimaksud pada ayat (2) disediakan katup pembuangan.

## Pasal 87

Instalasi Sistem Pipa Tegak Bangunan Gedung dapat dikombinasikan dengan Sistem Sprinkler dengan pipa tegak tersendiri atau terpisah.

#### Pasal 88

Bangunan gedung yang diproteksi seluruhnya dengan Sistem Sprinkler jika dikombinasikan dengan Sistem Pipa Tegak, maka penamahan kebutuhan air dan/atau kapasitas pompa harus berdasarkan kebutuhan air yang terbesar berdasarkan perhitungan hidrolika.

#### Pasal 89

Laju aliran air untuk Sistem Kombinasi harus sesuai persyaratan sebagaimana dimaksud dalam Pasal 81 dan Pasal 82.

#### Pasal 90

(1) Besar laju aliran pada sambungan slang 40 mm (empat puluh milimeter) dan/atau 1½ (satu setengah inchi) paling tinggi harus

- mencapai 378 L/menit (tiga ratus tujuh puluh Sembilan liter per menit) dan/atau 100 gpm (seratus gallon per menit).
- (2) Besar laju aliran pada sambungan slang 65 mm (enam puluh lima milimeter) dan/atau 2½ (dua setengah inchi) paling tinggi harus mencapai 946 L/menit (Sembilan ratus empat puluh enam liter per menit) dan/atau 250 gpm (dua ratus lima puluh gallon per menit).

## Paragraf 3

#### Pasokan air

### Pasal 91

- (1) Sistem dengan 2 (dua) zona atau lebih yang tidak dapat dipasok air oleh pompa Dinas melalui Sambungan Pemadam Kebakaran, maka harus disediakan suatu pasokan air tambahan berupa tangki air pada elevasi atas dengan peralatan pompa tambahan, atau cara lain yang disetujui oleh Dinas.
- (2) Pemenuhi tekanan dan laju aliran sesuai persyaratan, maka setiap zona kecuali zona bawah harus menggunakan 2 (dua) atau lebih pipa pemasok langsung.

## Bagian Kelima

## Pompa Kebakaran

### Pasal 92

- (1) Setiap Sistem Pipa Tegak Basah harus menggunakan paling sedikit 1 (satu) set pompa kebakaran.
- (2) 1 (satu) set pompa kebakaran sebagaimana pada ayat (1) terdiri dari:a. pompa utama; danb. pompa cadangan
- (3) Pompa kebakaran sebagaimana dimaksud pada ayat (2) harus dilengkapi dengan pompa pacu yang berfungsi mempertahankan tekanan dalam Sistem Pipa Tegak serta mencegah pompa kebakaran utama beroperasi.

- (1) Setiap zona Sistem Pipa Tegak harus menggunakan 1 (satu) set pompa kebakaran terpisah.
- (2) Batas ketinggian zona pada bangunan gedung dibatasi sampai dengan 75m (tujuh puluh lima meter) dihitung dari letak pompa kebakaran.

- (1) Ruang pompa kebakaran harus ditempatkan dilantai dasar atau basement satu bangunan gedung dengan memperhatikan dilantai dasar atau basement satu bangunan gedung dengan memperhatikan titik ketinggian (peil) bebas banjir, akses dan ventilasi serta pemeliharaan.
- (2) Bangunan gedung yang karena ketinggianya menuntut penempatan pompa kebakaran pada lantai yang lebih tinggi, ruangan pompa kebakaran dapat ditempatkan pada lantai sesuai dengan memperhatikan akses dan ventilasi serta pemeliharaan.

Ruang pompa kebakaran yang lebih dari satu, maka pada setiap ruang pompa kebakaran harus disediakan sistem komunikasi suara (voice-communication system) untuk dapat saling berhubungan antara semua ruang pompa.

## Paragraf 1

## Persyaratan Pompa Kebakaran

#### Pasal 96

- Pompa kebakaran sebagaimana yang dimaksud dalam Pasal 92 harus sesuai standar.
- (2) Pompa kebakaran sebagaimana dimaksud pada ayat (1) harus mempunyai sumber daya tersendiri/independen yang terjamin kehandalannya.
- (3) Pompa kebakaran sebagaimana dimaksud pada ayat (2) menggunakan penggerak diesel, maka harus disediakan 1 (satu) set baterai utama dan 1 (satu) set baterai cadangan yang memiliki kapasitas serta kemampuan yang sama dengan dilengkapi selector.
- (4) Sumber daya untuk pompa utama tidak boleh dipergunakan sebagai sumber daya untuk pompa cadangan.
- (5) Sumber daya listrik pompa kebakaran harus menggunakan kabel listrik dengan insulasi tahan api dan dilindungi untuk menghindari kerusakan akibat benturan mekanis maupun kebakaran.

#### Pasal 97

(1) Pompa kebakaran harus berupa pompa tipe sentrifugal dan/atau pompa tipe turbin poros tegak dan dipasang dengan dipasang dengan hisapan positif. (2) Persyaratan pompa kebakaran tipe sentrifugal dan pompa tipe turbin poros tegak sebagaimana dimaksud pada ayat (1) harus sesuai dengan standar.

#### Pasal 98

- (1) Pompa kebakaran harus didukung oleh sistem penyediaan air yang handal, baik kuantitas maupun kualitasnya dan berasal dari sumber yang diizinkan sesuai standar.
- (2) Besarnya kapasitas pompa kebakaran sebagaiman dimaksud pada ayat (1) harus sesuai dengan jenis ancaman bahaya kebakaran pada bangunan gedung dan jumlah pipa tegak yang digunakan.
- (3) Kapasitas pompa kebakaran sebagaimana dimaksud pada ayat (1) harus dapat memenuhi kebutuhan lanju aliran air untuk Sistem Pipa Tegak.

## Pasal 99

Semua pompa kebakaran harus bekerja secara otomatis berdasarkan penurunan tekanan air dan berhenti secara manual.

#### Pasal 100

Persyaratan motor, alat control motor listrik maupun diesel serta perlengkapannya pada pompa kebakaran harus secara manual.

- (1) Bangunan gedung bertingkat rendah dengan ancaman bahaya kebakaran ringan yang luasnya lebih dari 4.000 m² (empat ribu meter persegi), harus menggunakan pompa kebakaran dengan kapasitas paling rendah 500 gpm (lima ratus gallon per menit) dan/atau 1.892 L/m(seribu delapan ratus sembilan puluh dua liter per menit) untuk pipa tegak pertama khusus melayani hidran gedung dengan tambahan masing-masing 250 gpm (dua ratus lima puluh gallon per menit) dan/atau 946 L/m (Sembilan ratus empat puluh enam galon per menit) untuk setiap penambahan satu pipa tegak berikutnya.
- (2) Bangunan gedung bertingkat rendah dengan ancaman bahaya kebakaran sedang yang luasnya kurang dari atau capai 3.200 m² (tiga ribu dua ratus meter persegi), harus menggunakan pompa kebakaran dengan kapasitas paling rendah 500 gpm (lima ratus galon per menit) dan/atau 1.892 L/m (seribu delapan ratus sembilan puluh dua liter per menit) untuk pipa tegak pertama khusus melayani hidran gedung dengan tambahan masing-masing 250 gpm (dua ratus lima puluh galon per menit)dan/atau 946 L/m (Sembilan ratus empat puluh enam galon per menit) untuk setiap penambahan satu pipa tegak berikutnya.

## Paragraph 2

## Karateristik Pompa Kebakaran

#### Pasal 102

Pada saat pompa kebakaran menghasilkan laju aliran air sebesar 150% (seratus lima puluh persen) dari kapasitas normal pompa, tekanan air yang dihasilkan tidak boleh kurang dari 65% (enam puluh lima persen) dari total *head nominal*.

### Pasal 103

Pada saat pompa kebakaran dalam keadaan bekerja dengan kondisi katup pelepasan tertutup (tanpa aliran), tekanan air yang dihasilkan tidak boleh melebihi 140% (seratus empat puluh persen) dari total head nominal.

### Pasal 104

Karateristik pompa kebakaran dinyatakan pada grafik tekanan terhadap laju aliran dari hasil pengujian di pabrik pembuat pompa.

## Paragraph 3

## Panel Kontrol

### Pasal 105

- (1) Pompa kebakaran harus dilengkapi dengan panel kontrol.
- (2) Panel Kontrol sebagaiman dimaksud pada ayat (1) harus memenuhi ketentuan sebagai berikut:
  - a. satu panel kontrol hanya melayani satu pompa kebakaran;
  - b. dapat menghidupkan pompa kebakaran berdasarkan penurunan tekanan air;
  - c. tidak terkait dengan sistem kontrol lainnya; dan
  - d. berdekatan dan mudah dijangkau dari pompa kebakaran yang dilayani.

#### Pasal 106

Pemutus arus saklar utama panel panel kontrol pompa kebakaran harus mampu menahan 600% (enam ratus persen) arus listrik pada beban nominal (laju aliran air nominal), untuk paling tidak selama 100 (seratus) detik.

Paragraph 4

Pipa Hisap

Pasal 107

(1) Setiap pompa kebakaran harus terhubung langsung ke sumber air melalui pipa hisap tersendiri

- (2) Pipa hisap sebagaiman dimaksud pada ayat (1) harus memenuhi ketentuan sebagai berikut;
  - a. Dipasang sedemikian rupa sehingga menimbulkan terbentuknya kantong udara;
  - b. Dilengkapi sambungan lentur (*flexible joint*) untuk melindungi pompa dari gaya getaran yang berlebihan; dan
  - c. Memiliki diameter sebagaiman tercantum dalam standar dalam standar 2 Lampiran Peraturan Walikota ini.

## Paragraph 5

## Alat Pengukur Tekanan

### Pasal 108

- (1) Dalam hal tidak dapat menggunakan 1 (satu) set pompa kebakaran yang terpisah untuk setiap zona sebagaiman dimaksud dalam Pasal 92, maka harus digunakan Alat Pengatur Tekanan.
- (2) Penggunaan Alat Pengatur Tekanan (pressure-regulating devices) sebagaimana dimaksud pada ayat (1) harus disetujui Dinas untuk aplikasi dalam kondisi laju aliran paling rendah dan paling tinggi yang diantisipasi.
- (3) Alat Pengatur Tekanan sebagaiman dimaksud pada ayat (1) harus dipasang sesuai dengan standar sehingga kegagaln pada salah satu alat tersebut tidak akan menyebabkan kenaikan tekanan melebihi 6,9 (enam koma Sembilan) bar dan/atau 100 (seratus) psi pada sambungan slang 40 mm (empat puluh milimeter) serta 12,1 (dua belas koma satu) bar dan/atau 175 (seratus tujuh puluh lima) psi pada sambungan slang 65 mm (enam puluh lima milimeter) dan/atau 2½ (dua setengah inchi).

- (1) Alat Pengatur Tekanan harus memenuhi ketentuan berikut;
  - a. dipasang pipa bypass dengan katup keadaan normal tertutup;
  - b. memperhatikan kemudahan pemeliharaan dan perbaikan
  - c. dilengkapi dengan pengukur tekanan pada sisi masuk dan sisi keluar dan dilengkapi dengan katup pelepas tekanan sesuai dengan rekomendasi pabrik pembulat alat tersebut.
- (2) Dalam hal pemeliharaan dan perbaikan Alat Pengatur Tekanan sebagaimana dimaksud pada ayat (1) harus disediakan katup isolasi.

Tekanan pada sisi masuk dari Alat Pengukur Tekanan tidak boleh lebih dari tekanan kerja alat tersebut.

## Paragraph 6

## Papan Informasi pada Ruang Pompa Kebakaran

#### Pasal 111

- (1) Ruang pompa kebakaran harus dipasang suatu papn informasi yang menunjukkan besarnya rancangan dan laju aliran rancangan.
- (2) Papan informasi sebagaimana dimaksud pada ayat (1) harus dipasang di ruangan pompa dan harus memuat hal sebagai berikut:
  - a. lokasi dua sambungan slang yang terjauh secara hidrolik;
  - b. laju aliran rancangan (design flowrate) untuk kedua sambungan slang sebagaiman dimaksud pada huruf a;
  - c. tekanan sisa pada inlet dan outle yang dirancang pada kedua sambungan slang sebagaiamana dimaksud pada huruf a;
  - d. tekanan statik rancangan dan laju aliran rancangan pada katup control sistem, atau pada flens keluar katup dan pada setiap sambungan pembukaan kebakaran.

#### Pasal 112

Bangunan gedung yang disyaratkan untuk memasang Sistem Pipa Tegak harus menyediakan papan informasi yang memuat dasar perancangan sistem, berdasarkan pipa skedul atau perhitungan hidrolik.

## Bagian Keenam

## Pengukur Tekanan

- (1) Pengukur Tekanan harus dari jenis tabungan *Bourdon* dengan indikasi analog piring berdiameter paling sedikit 90 mm (sebilan puluh milimeter) dan/atau 3½ (tiga setengah inchi) dari jarum penunjuk serta indikasi paling tinggi lebih dari 150% (seratus lima puluh persen) terhadap tekanan paling tinggi yang akan diukur.
- (2) Pengukur tekanan sebagaiman dimaksud pada ayat (1) harus dipasang pada:
  - a. Setiap keluaran pompa pemadam kebakaran:
  - b. Tangki tekan;
  - c. Kompresor udara yang mengisi tangki tekan;
  - d. Setiap sambungan pipa utama pengering; dan
  - e. Puncak setiap pipa tegak.

Setiap Pengukur Tekanan harus dipasang dengan katup agar air dapat dikeringkan (drained).

## Pasal 115

Pipa tegak dalam jumlah tertentu dalam kondisi terhubung, boleh dipasang 1 (satu) buah Pengukur Tekanan pada puncaknya sebagaimana pengganti Pengukur Tekanan pada masing-masing pipa tegak.

# Bagian Ketujuh Perhitungan Hidrolik

## Pasal 116

- (1) Semua Sistem Pipa Tegak, perhitungan hidrolik harus menggunakan kebutuhan air terbesar sesuai dengan ketentuan Pasal 79, Pasal 80 dan Pasal 81.
- (2) Perhitungan sebagaimana dimaksud pada ayat (1) harus dimulai pada keluaran (outlet) setiap sambungan slang dan harus mencakup kehilangan tekanan akibat gesekan untuk katup slang dan sambungan pipa manapun dari katup slang sampai pipa tegak.
- (3) Untuk menentukan nilai panjang ekuivalen pipa (the equivalent length of pipe) dari fiting dan alat, harus digunakan table sebagaimana tercantum dalam standar 3 lampiran Peraturan Walikota ini.

## Bagian Kedelapan

#### Gambaran Rancangan

- (1) Gambar Rancangan perletakan Sistem Pipa Tegak dan perhitungan hidrolik harus jelas, informasi dapat dibaca, dan digambar sesuai skala.
- (2) Gambar sebagaiaman dimaksud pada ayat (1) harus menunjukkan;
  - a. Lokasi;
  - b. Perletakan;
  - c. Penyediaan air;
  - d. Peralatan (equipment);
  - e. Spesifikasi bahan yang digunakan;
  - f. Uraian semua komponen sistem;
  - g. Diagram elevasi;
  - h. Elevasi tiap lantai; dan
  - i. Semua rincian lain yang diperlukan.

(3) Gambar sebagaimana dimaksud pada ayat (1) harus melampirkan ukuran pipa tegak dengan perhitungan hidrolik dan perhitungan, mencakup lembar ringkasan (summary), perhitungan rinci dan lembar grafik.

#### Pasal 118

Lembar ringkasan sebagaiamana dimaksud dalam Pasal 117 ayat (3) harus memuat hal sebagai berikut;

- a. Tanggal, lokasi, pemilik gedung dan penghuni, alamat gedung;
- Nama dan alamat perancang atau kontraktor, nama lembaga yang menyetujui; dan
- c. Uraian bahaya kebakaran, persyaratan desain yaitu jumlah pipa tegak yang dialiri air dan laju aliran air (L/menit atau gpm) dan persyaratan kebutuhan air yang dihitung, termasuk cadangan untuk slang dalam gedung, hidran (luar) dan sprinkler untuk gedung dengan proteksi sprinkler sebagian.

#### Pasal 119

Perhitungan rinci sebagaimana dimaksud dalam Pasal 117 ayat (3) harus memuat hal berikut;

- a. Nomor lembar (dad berapa lembar), uraian sambungan siang dan konstanta keluaran (K, konstanta Hazen-Williams), titik referensi hidrolik, laju aliran (Ll menit atau gpm), ukuran pipa, panjang pipa diukur dari garis tengah fiting, panjang ekuivalen untuk fiting; dan
- b. Kehilangan tekanan akibat gesekan dalam satu~ln bar/m-pipa atau. psilft-pipa, kehilangan tekanan total akibat gesekan di antara titiktitik referensi, tekanan yang dibutuhkan (dalam satuan bar atau psi) pada setiap titik referensi, tekanan kecepatan dan tekanan normal bila termasuk dalam perhitungan.

### Pasal 120

Lembar grafik sebagaimana dimaksud dalam Pasal 117 ayat (3) harus digambar pada kertas semi-exponential ( $Q^{1.85}$ ) dan harus memuat hal sebagai berikut :

- a. Kurva karakteristik pompa yang telah dikoreksi;
- b. Kebutuhan Sistem Pipa Tegak; dan
- c. Kebutuhan slang.

#### **BAB IV**

# SISTEM PIPA TEGAK DAN SLANG KEBAKARAN SERTA HIDRAN HALAMAN BANGUNAN MASA KONSTRUKSI

#### Pasal 121

- Bangunan gedung dalam masa konstruksi harus dipasang Sistem Pipa Tegak untuk menyediakan proteksi kebakaran sampai lantai tertinggi.
- (2) Sistem Pipa Tegak yang dipasang sebagaimana dimaksud pada ayat
  (1) harus merupakan Sistem Pipa Tegak sementara atau Sistem Pipa Tegak tetap.
- (3) Sistem Pipa Tegak sementara bangunan gedung dalam masa konstruksi sebagaimana dimaksud pada ayat (2) harus tetap berfungsi sampai pipa tegak yang telah lengkap terpasang.

#### Pasal 122

Sistem Pipa Tegak pada bangunan gedung masa konstruksi harus terhubung dengan Sambungan Pemadam Kebakaran yang diberi tanda .yang jelas dan mudah diakses pada sisi luar gedung pada level jalan, di lokasi yang disetujui oleh Dinas.

#### Pasal 123

- (1) Pipa tegak pada bangunan gedung dalam masa konstruksi harus diikatkan (restrained) pada konstruksi bangunan di setiap lantai.
- (2) Pipa tegak sebagaimana dimaksud pada ayat (1) harus ditempatkan di dalam area yang terlindung dari benturan mekanik dan tahan kebakaran.

### Pasal 124

Pengelasan pipa tegak yang dipasang di dalam bangunan yang sedang dalam tahap konstruksihanya diperbolehkan bilakonstruksi bangunan tidak mudah terbakar, tidak ada bahan dan barang di dalam bangunan.yang mudah terbakar dan proses pengelasannya sesuai standar.

## Pasal 125

Dalam hal terdapat 2 (dua) atau lebih pipa tegak pada bangunan yang sama atau bagian bangunan gedung masa konstruksi, maka pipa tegak tersebut harus diinterkoneksikan pada pipa utama (header) pompa.

### Pasal 126

(1) Bangunan gedung dalam masa konstruksi harus menggunakan ukuran pipa, sambungan slang, slang, penyediaan air dan rincian lainnya sesuai dengan Standar yang berlaku.

(2) Sambungan slang sebagaimana dimaksud pada ayat (1) harus disediakan pada setiap lantai dan terlindung dari kerusakan mekanik serta dapat digunakan sewaktu-waktu.

## Pasal 127

- (1) Sambungan Pemadam Kebakaran padabangunan gedung masa konstruksi yang melayani zona' rendah, zona menengah dan zona tinggi harus diinterkoneksi langsung ke sistem perpipaan untuk pipa tegak dan/atau sprinkler yang dilayani.
- (2) Sambungan Pemadam Kebakaran sebagaimana yang dimaksud pada ayat (1) harus ditempatkan sesuai ketentuan dalam Pasal 62 serta aman terlindung dari benturan mekanik pada saat terjadi kebakaran.
- (3) Sambungan Pemadam Kebakaran sebagaimana dimaksud pada ayat (1) harus diberi tanda yang menyatakan sistem, bagian/zona sistem dan bangunan yang dilayani.

### Pasal 128

Sebelum penyelesaian sistem dan sebelum pemasangan Sambungan Pemadam Kebakaran, bagian pipa antara Sambungan Pemadam Kebakaran dan katup 1 (satu) arah dalam pipa masuk harus dikuras sehingga mengeluarkan semua kotoran dan sampah konstruksi, yang terkumpul dalam pipa.

#### Pasal 129

Jenis dan kualitas bahan yang digunakan untuk instalasi Sistem Pipa Tegak pada bangunan gedung masa konstruksi harus sesuai dengan standar yang berlaku.

#### BAB V

#### PENGUJIAN SISTEM

- (1) Semua Sistem Pipa Tegak yang baru terpasang harus diuji oleh Dinas untuk mendapatkan rekomendasi dalam rangka penerbitan Sertifikat Laik Fungsi.
- (2) Dalam hal terdapat perubahan Sistem Pipa Tegak sebagaimana dimaksud pada ayat (1) maka sistem tersebut harus diuji oleh Dinas untuk mendapatkan persetujuan.

Persyaralan buku petunjuk, alat parkakas khusus, suku cadang, pemeriksaan berkala, pengujian dan pemeliharaan Sistem Pipa Tegak harus sesuai dengan standar.

#### Pasal 132

- (1) Kontraktor/penanggung jawab yang melakukan pemasangan Sistem Pipa Tegak harus melengkapi surat pernyataan tanggung jawab bahwa Sistem Pipa Tegak tersebut sudah sesuai dengan standar yang berlaku.
- (2) Kontraktor/penanggung jawab sebagaimana dimaksud pada ayat (1) harus menyerahkan kepada pemilik/pengelola gedung semua brosur (literature) dan petunjuk yang disediakan pabrik pembuat peralatan, yang menguraikan pengoperasian dan pemeliharaan semua peralatan yang dipasang.

## Pasal 133

- (1) Semua sambungan slang dan Sambungan Pemadam Kebakaran harus diuji untuk memastikan kesesuaiannya dengan jenis sambungan yang digunakan Dinas.
- (2) Pengujian sebagaimana dimaksud pada ayat (1) untuk mengetahui kemampuan sambungan slang dan Sambungan Pemadam Kebakaran harus dilakukan dengan memasang contoh kopling, tutup dan/atau sumbat ke alat yang terpasang.

- (1) Semua Sistem Pipa Tegak termasuk pemipaan di halaman gedung dan Sambungan Pemadam Kebakaran, harus diuji secara Hidrostatik (tested hydrostatically) pada tekanan:
  - a. tidak kurang dari 13,8 (tiga belas koma delapan) bar dan/atau 200 (dua ratus) psi selama 2 (dua) jam; atau
  - b. bila tekanan paling tinggi dalam sistem tersebut lebih dari 10,3 (sepuluh koma tiga) bar dan/atau 150 (seratus lima puluh) psi, maka tekanan paling tinggi tersebut ditambah dengan tekanan uji sebesar 3,5 (tiga koma lima) bar dan/atau 50 (lima puluh) psi selama 2 (dua) jam.
- (2) Bagian pipa antara Sambungan Pemadam Kebakaran dan katup satu arah pada pipa masuk, harus diuji hidrostatik sebagaimana dimaksud pada ayat (1).

- (3) Tekanan ujihidrostatik sebagaimana dimaksud pada ayat (1) harus diukur pada titik elevasi rendah setiap sistem atau zona yang diuji.
- (4) Pengujian Sistem Pipa Tegak sebagaimana dimaksud pada ayat (1) tidak baleh menunjukkan kebacoran, sesuai ketentuan dalam standar yang berlaku.

Sistem Pipa Tegak harus diuji untuk memastikan (verifikasi) kebutuhan sistem, dengan mengalirkan air serempak dari semua keluaran pada setiap pipa tegak yang dinyatakan pada perhitungan hidrolik setiap pipa tegak sesuai dengan persyaratan yang diatur dalam standar.

#### Pasal 136

Sebuah pompa dari mobil Dinas dengan kapasitas yang dapat memenuhi kebutuhan sistem harus digunakan untuk memastikan (verifikasi) perancangan sistem dengan memompakan air ke dalam Sambungan Pemadam Kebakaran.

#### BAB VI

## PEMERIKSAAN, PENGUJIAN DAN PEMELIHARAAN BERKALA

- (1) Ketentuan teknis pemeriksaan, pengujian dan pemeliharaan berkala meliputi :
  - a. prosedur yang dilakukan;
  - b. frekuensi;
  - c. organisasi/personil yang melaksanakan;
  - d. hasil; dan
  - e. tanggal dilaksanakan.
- (2) Pemeriksaan, pengujian dan pemeliharaan berkala sebagaimana dimaksud pada ayat (1) menjadi tanggung jawab dari pemilik/pengguna bangunan gedung.
- (3) Pemeriksaan, pengujian dan pemeliharaan berkala sebagaimana dimaksud pada ayat (2) harus dilakukan oleh orang dan/atau badan yang memiliki sertifikat kompetensi di bidang pencegahan kebakarari dari asosiasi prafesi yang terakreditasi sesuai ketentuan peraturan perundang-undangan.

Agar kehandalan sistem tetap terpelihara (optimal), maka secara berkala harus diadakan pemeliharaan dan pengujian instalasi secara mandiri atau dapat mengikutsertakan Dinas.

#### **BAB VII**

#### KETENTUAN PERALIHAN

#### Pasal 139

Terhadap semua persyaratan teknis dan tata cara pemasangan Sistem Pipa Tegak dan Slang Kebakaran serta Hidran Halaman yang dikeluarkan sebelum berlakunya Peraturan Walikota ini, harus disesuaikan dengan tanggal ditetapkan Perturan Walikota ini.

#### Pasal 140

Bangunan gedung yang sudah ada sebelum Peraturan Walikota ini berlaku dan akan dilakukan perubahan peruntukan hunian atau akan ada perubahan pada sistem pipa tegak dan slang yang sudah terpasang, maka seluruh bangunan gedung tersebut harus mematuhi ketentuan Peraturan Walikota ini.

#### **BAB VIII**

## KETENTUAN PENUTUP

#### Pasal 141

Peraturan Walikota ini mulai berlaku pada tanggal diundangkan.

Agar setiap orang mengetahuinya, memerintahkan pengundangan peraturan Walikota ini dengan penempatanya dalam Berita Daerah Kota Ambon.

Ditetapkan di Ambon

Pada tanggal, 30 Mei

PENJABAT WALIKOTA AMBON,

2022

BODEWIN MELKIAS WATTIMENA

Diundangkan di Ambon

pada tanggal, 30 Me

2022

SEKRETARIS KOTA,

ON MACKET

AGUS RIRIMASSE

BERITA DAERAH KOTA AMBON TAHUN 2022 NOMOR

LAMPIRAN PERATURAN WALIKOTA

NOMOR 17 TAHUN 2022

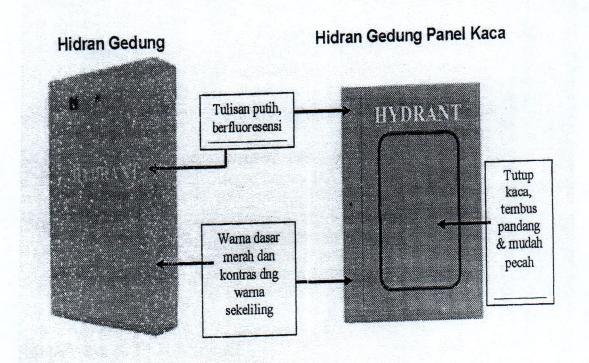
TANGGAL 30 M&I 2022

TENTANG PERSYARATAN TEKNIS DAN TATA

CARA PEMASANGAN SISTEM PIPA

TEGAK DAN SLANG KEBAKARAN

SERTA HIDRAN HALAMAN


| No | Standardisasi | dardisasi Judul                                                                             |  |  |  |
|----|---------------|---------------------------------------------------------------------------------------------|--|--|--|
| 1. | Standar 1     | Gambar Hidran Gedung dan Hidran Gedung<br>Panel Kaca                                        |  |  |  |
| 2. | Standar 2     | Ukuran Diameter Pipa Hisap dan Pipa Tekan<br>Terhadap Kapasitas Pompa                       |  |  |  |
| 3. | Standar 3     | Panjang Pipa Ekuivalen, Faktor Penyesuaian<br>Untuk Nilai C dan Nilai C dari Hazen-Williams |  |  |  |

PENJABAT WALIKOTA AMBON L

BODEWIN MELKIAS WATTIMENA

LAMPIRAN 1 NOMOR 17 TAHUN 2022 TANGGAL 30 MEI 2022 TENTANG GAMBAR HIDRAN GEDUNG DAN HIDRAN GEDUNG PANEL KACA

# STANDAR 1



PENJABAT WALIKOTA AMBON, A
BODEWIN MELKIAS WATTIMENA

LAMPIRAN 2 NOMOR 17 TAHUN 2022 TANGGAL 30 MEI 2022 `

TENTANG UKURAN DIAMETER PIPA HISAP DAN

PIPA TEKAN TERHADAP KAPASITAS **POMPA** 

| KAPASIT | AS POMPA | UKURAN MINIMUM PIPA (inchi) |                          |  |  |  |
|---------|----------|-----------------------------|--------------------------|--|--|--|
| gpm     | L/menit  | Pipa Hisap                  | Pipa Tekan ( discharge ) |  |  |  |
| 25      | 95       | 1                           | 1                        |  |  |  |
| 50      | 189      | 1,5                         | 1,25                     |  |  |  |
| 100     | 379      | 2                           | 2                        |  |  |  |
| 500     | 1892     | 5                           | 5                        |  |  |  |
| 750     | 2839     | 6                           | 6                        |  |  |  |
| 1000    | 3785     | 8                           | 6                        |  |  |  |
| 1250    | 4731     | 8                           | 8                        |  |  |  |
| 1500    | 5677     | 8                           | 8                        |  |  |  |
| 2000    | 7570     | 10                          | 10                       |  |  |  |
| 2500    | 9642     | 10                          | 10                       |  |  |  |
| 3000    | 11355    | 12                          | 12                       |  |  |  |
| 3500    | 13247    | 12                          | 12                       |  |  |  |
| 4000    | 15140    | 14                          | 12                       |  |  |  |
| 4500    | 17032    | 16                          | 14                       |  |  |  |
| 5000    | 18925    | 16                          | 14                       |  |  |  |

PENJABAT WALIKOTA AMBON, L

BODEWIN MELKIAS WATTIMENA

LAMPIRAN 3 NOMOR

17 TAHUN 2022

TANGGAL **TENTANG**  30 MEI

PANJANG PIPA EKUIVALEN, FAKTOR PENYESUAIAN UNTUK NILAI C DAN

2022.

NILAI C DARI HAZEN-WILLIAMS

| Fitting dan                             | Fitting dan Fitting dan katup dinyatakan dalam panjang ekuivalen pipa (feet) |    |      |       |    |       |    |       |    |    |    |    |     |     |
|-----------------------------------------|------------------------------------------------------------------------------|----|------|-------|----|-------|----|-------|----|----|----|----|-----|-----|
| Katup                                   | 3/4                                                                          | 1" | 11/4 | 11/2" | 2" | 21/2" | 3" | 31/2" | 4" | 5" | 6" | 8" | 10" | 12" |
| Elbow 450                               | 1                                                                            | 1  | 1    | 2     | 2  | 3     | 3  | 3     | 4  | 5  | 7  | 9  | 11  | 13  |
| Elbow<br>Standar 90º                    | 2                                                                            | 2  | 3    | 4     | 5  | 6     | 7  | 8     | 10 | 12 | 14 | 18 | 22  | 27  |
| Elbow<br>Panjang 90º                    | 1                                                                            | 2  | 2    | 2     | 3  | 4     | 5  | 5     | 6  | 8  | 9  | 13 | 16  | 18  |
| Tee atau<br>silang (sudut<br>belok 90°) | 3                                                                            | 5  | 6    | 8     | 10 | 12    | 15 | 17    | 20 | 25 | 30 | 35 | 50  | 60  |
| Katup kupu<br>kupu                      |                                                                              |    |      |       | 6  | 7     | 10 |       | 12 | 9  | 10 | 12 | 19  | 21  |
| Katup sorong                            |                                                                              |    |      |       | 1  | 1     | 1  | 1     | 2  | 2  | 3  | 4  | 5   | 6   |
| Katup satu<br>arah ayun                 |                                                                              | 5  | 7    | 9     | 11 | 14    | 16 | 19    | 22 | 27 | 32 | 45 | 55  | 65  |
| Katup bulat                             |                                                                              |    |      | 46    |    | 70    |    |       |    |    |    |    |     |     |
| Katup sudut                             |                                                                              |    |      | 20    |    | 31    |    |       |    |    |    |    |     |     |

Untuk unit SI; 1 inchi =25,4 mm

Faktor Penvesuaian Untuk Nilai C NilaiC

| Nilai C          | 100   | 130  | 140  | 150  |
|------------------|-------|------|------|------|
| Faktor Perkalian | 0,713 | 1,16 | 1,33 | 1,51 |

Nilai C dari Hazen-Williams

| Pipa atau Tabung                              | Nilai C |
|-----------------------------------------------|---------|
| Unlined cast or ductile iron                  | 100     |
| Black steel (drv systems includina oreaction) | 100     |
| Black steel (wet sYstems includina deluae)    | 120     |
| Galvanized (all)                              | 120     |
| Plastic (listed-all)                          | 150     |
| Cement-lined cnsr or ductile iron             | 140     |
| Coooer tube or stainless steel                | 150     |

walikota)ambon,k

BODEWIN MELKIAS WATTIMENA